Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.07.28.551051

Résumé

The SARS-CoV-2 spike protein is a highly immunogenic and mutable protein that is the target of vaccine prevention and antibody therapeutics. This makes the encoding S-gene an important sequencing target. The SARS-CoV-2 sequencing community overwhelmingly adopted tiling amplicon-based strategies for sequencing the entire genome. As the virus evolved, primer mismatches inevitably led to amplicon drop-out. Given the exposure of the spike protein to host antibodies, mutation occurred here most rapidly, leading to amplicon failure over the most insightful region of the genome. To mitigate this, we developed SpikeSeq, a targeted method to amplify and sequence the S-gene. We evaluated 20 distinct primer designs through iterative in silico and in vitro testing to select the optimal primer pairs and run conditions. Once selected, periodic in silico analysis monitor primer conservation as SARS-CoV-2 evolves. Despite being designed during the Beta wave, the selected primers remain > 99% conserved through Omicron as of 2023-04-14. To validate the final design, we compared SpikeSeq data and National SARS-CoV-2 Strain Surveillance whole-genome data for 321 matching samples. Consensus sequences for the two methods were highly identical (99.998%) across the S-gene. SpikeSeq can serve as a complement to whole-genome surveillance or be leveraged where only S-gene sequencing is of interest. While SpikeSeq is adaptable to other sequencing platforms, the Nanopore platform validated here is compatible with low to moderate throughputs, and its simplicity better enables users to achieve accurate results, even in low resource settings.


Sujets)
Syndrome respiratoire aigu sévère
2.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.01.08.523127

Résumé

The early Omicron lineage variants evolved and gave rise to diverging lineages that fueled the COVID-19 pandemic in 2022. Bivalent mRNA vaccines, designed to broaden protection against circulating and future variants, were authorized by the U.S. Food and Drug Administration (FDA) in August 2022 and recommended by the U.S. Centers for Disease Control and Prevention (CDC) in September 2022. The impact of bivalent vaccination on eliciting neutralizing antibodies against homologous BA.4/BA.5 viruses as well as emerging heterologous viruses needs to be analyzed. In this study, we analyze the neutralizing activity of sera collected after a third dose of vaccination (2-6 weeks post monovalent booster) or a fourth dose of vaccination (2-7 weeks post bivalent booster) against 10 predominant/recent Omicron lineage viruses including BA.1, BA.2, BA.5, BA.2.75, BA.2.75.2, BN.1, BQ.1, BQ.1.1, XBB, and XBB.1. The bivalent booster vaccination enhanced neutralizing antibody titers against all Omicron lineage viruses tested, including a 10-fold increase in neutralization of BQ.1 and BQ.1.1 viruses that predominated in the U.S. during the last two months of 2022. Overall, the data indicate the bivalent vaccine booster strengthens protection against Omicron lineage variants that evolved from BA.5 and BA.2 progenitors.


Sujets)
COVID-19
3.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.03.19.484981

Résumé

Recombination between SARS-CoV-2 virus variants can result in different viral properties (e.g., infectiousness or pathogenicity). In this report, we describe viruses with recombinant genomes containing signature mutations from Delta and Omicron variants. These genomes are the first evidence for a Delta-Omicron hybrid Spike protein in the United States.


Sujets)
Maladies transmissibles
4.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.11.24.469906

Résumé

The divergence of SARS-CoV-2 into variants of concern/interest (VOC/VOI) necessitated analysis of their impact on vaccines. Escape from vaccine-induced antibodies by SARS-CoV-2 VOC/VOIs was analyzed to ascertain and rank their risk. The variants showed differential reductions in neutralization and replication titers by the post-vaccination sera with Beta variant showing the most neutralization escape that was mechanistically driven by mutations in both the N-terminal domain and receptor-binding domain of the spike.


Sujets)
COVID-19
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.01.21257987

Résumé

ABSTRACT BACKGROUND: Information is limited on messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccine effectiveness (VE) in preventing SARS-CoV-2 infection or attenuating disease when administered in real-world conditions. METHODS: Prospective cohorts of 3,975 healthcare personnel, first responders, and other essential and frontline workers completed weekly SARS-CoV-2 testing during December 14 2020--April 10 2021. Self-collected mid-turbinate nasal swabs were tested by qualitative and quantitative reverse-transcription--polymerase-chain-reaction (RT-PCR). VE was calculated as 100%x (1-hazard ratio); adjusted VE was calculated using vaccination propensity weights and adjustments for site, occupation, and local virus circulation . RESULTS: SARS-CoV-2 was detected in 204 (5.1%) participants; 16 were partially ([≥]14 days post-dose-1 to 13 days after dose-2) or fully ([≥]14 days post-dose-2) vaccinated, and 156 were unvaccinated; 32 with indeterminate status (<14 days after dose-1) were excluded. Adjusted mRNA VE of full vaccination was 91% (95% confidence interval [CI]=76%--97%) against symptomatic or asymptomatic SARS-CoV-2 infection; VE of partial vaccination was 81% (95% CI=64%-90%). Among partially or fully vaccinated participants with SARS-CoV-2 infection, mean viral RNA load (Log10 copies/mL) was 40% lower (95% CI=16%-57%), the risk of self-reported febrile COVID-19 was 58% lower (Risk Ratio=0.42, 95% CI=0.18-0.98), and 2.3 fewer days (95% CI=0.8-3.7) were spent sick in bed compared to unvaccinated infected participants. CONCLUSIONS: Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infections when administered in real-world conditions and attenuated viral RNA load, febrile symptoms, and illness duration among those with breakthrough infection despite vaccination.


Sujets)
COVID-19 , Douleur paroxystique , Syndrome respiratoire aigu sévère
6.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.01.04.425336

Résumé

Coinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viruses is inevitable as the COVID-19 pandemic continues. This study aimed to evaluate cell lines commonly used in virus diagnosis and isolation for their susceptibility to SARS-CoV-2. While multiple kidney cell lines from monkeys were susceptible and permissive to SARS-CoV-2, many cell types derived from human, dog, mink, cat, mouse, or chicken were not. Analysis of MDCK cells, which are most commonly used for surveillance and study of influenza viruses, demonstrated that they were insusceptible to SARS-CoV-2 and that the cellular barrier to productive infection was due to low expression level of the angiotensin converting enzyme 2 (ACE2) receptor and lower receptor affinity to SARS-CoV-2 spike, which could be overcome by over-expression of canine ACE2 in trans. Moreover, SARS-CoV-2 cell tropism did not appear to be affected by a D614G mutation in the spike protein.


Sujets)
COVID-19
7.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.26.356279

Résumé

Immunomodulatory agents dexamethasone and colchicine, antiviral drugs remdesivir, favipiravir and ribavirin, as well as antimalarial drugs chloroquine phosphate and hydroxychloroquine are currently used in the combat against COVID-19. However, whether some of these drugs have clinical efficacy for COVID-19 is under debate. Moreover, these drugs are applied in COVID-19 patients with little knowledge of genetic biomarkers, which will hurt patient outcome. To answer these questions, we designed a screen approach that could employ genome-wide sgRNA libraries to systematically uncover genes crucial for these drugs' action. Here we present our findings, including genes crucial for the import, export, metabolic activation and inactivation of remdesivir, as well as genes that regulate colchicine and dexamethasone's immunosuppressive effects. Our findings provide preliminary information for developing urgently needed genetic biomarkers for these drugs. Such biomarkers will help better interpret COVID-19 clinical trial data and point to how to stratify COVID-19 patients for proper treatment with these drugs.


Sujets)
COVID-19
8.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.27.357558

Résumé

During the evolution of SARS-CoV-2 in humans a D614G substitution in the spike (S) protein emerged and became the predominant circulating variant (S-614G) of the COVID-19 pandemic. However, whether the increasing prevalence of the S-614G variant represents a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains elusive. Here, we generated isogenic SARS-CoV-2 variants and demonstrate that the S-614G variant has (i) enhanced binding to human ACE2, (ii) increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a novel human ACE2 knock-in mouse model, and (iii) markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Collectively, our data show that while the S-614G substitution results in subtle increases in binding and replication in vitro, it provides a real competitive advantage in vivo, particularly during the transmission bottle neck, providing an explanation for the global predominance of S-614G variant among the SARS-CoV-2 viruses currently circulating.


Sujets)
Crises épileptiques , COVID-19
9.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.27.357350

Résumé

Infection of human cells by the SARS-CoV2 relies on its binding to a specific receptor and subsequent fusion of the viral and host cell membranes. The fusion peptide (FP), a short peptide segment in the spike protein, plays a central role in the initial penetration of the virus into the host cell membrane, followed by the fusion of the two membranes. Here, we use an array of molecular dynamics (MD) simulations taking advantage of the Highly Mobile Membrane Mimetic (HMMM) model, to investigate the interaction of the SARS-CoV2 FP with a lipid bilayer representing mammalian cellular membranes at an atomic level, and to characterize the membrane-bound form of the peptide. Six independent systems were generated by changing the initial positioning and orientation of the FP with respect to the membrane, and each system was simulated in five independent replicas. In 60% of the simulations, the FP reaches a stable, membrane-bound configuration where the peptide deeply penetrated into the membrane. Clustering of the results reveals two major membrane binding modes, the helix-binding mode and the loop-binding mode. Taken into account the sequence conservation among the viral FPs and the results of mutagenesis studies establishing the role of specific residues in the helical portion of the FP in membrane association, we propose that the helix-binding mode represents more closely the biologically relevant form. In the helix-binding mode, the helix is stabilized in an oblique angle with respect to the membrane with its N-terminus tilted towards the membrane core. Analysis of the FP-lipid interactions shows the involvement of specific residues of the helix in membrane binding previously described as the fusion active core residues. Taken together, the results shed light on a key step involved in SARS-CoV2 infection with potential implications in designing novel inhibitors.


Sujets)
Syndrome respiratoire aigu sévère
10.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.26.355206

Résumé

The COVID-19 pandemic has exposed and exacerbated gender biases in science, technology, engineering, mathematics, and medicine. Accumulating evidence suggests that female scientists' productivity dropped during the initial lockdown period. With more time being spent on caregiving responsibilities, women may be struggling to collaborate on grant applications and launch new experiments. Scientists with disabilities or who belong to Indigenous nations or communities of color may have less time to devote to research due to health, family, or community needs. Collateral damage in this situation, the appropriate integration of sex, gender, and other identity characteristics in research content may also suffer. Sex and gender are better attended to when female scientists form part of the research team. Research funding agencies have a role to play in mitigating these effects by putting in place gender equity policies that support all applicants and ensure research quality. Accordingly, a national health research funder implemented gender policy changes that included extending deadlines and factoring sex and gender into COVID-19 grant requirements. Following these changes, the funder received more applications from female scientists, awarded a greater proportion of grants to female compared to male scientists, and received and funded more grant applications that considered sex and gender in the content of COVID-19 research. Whether or not these strategies will be sufficient in the long-term to prevent widening of the gender gap in science, technology, engineering, mathematics and medicine requires continued monitoring and oversight. Further work is urgently required to mitigate inequities associated with identity characteristics beyond gender.


Sujets)
COVID-19 , Troubles de la motricité
11.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.26.354969

Résumé

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a positive-sense single stranded RNA virus with high human transmissibility. This study generated Whole Genome data to determine the origin and pattern of transmission of SARS-CoV-2 from the first six cases tested in The Gambia. Total RNA from SARS-CoV-2 was extracted from inactivated nasopharyngeal-oropharyngeal swabs of six cases and converted to cDNA following the ARTIC COVID-19 sequencing protocol. Libraries were constructed with the NEBNext ultra II DNA library prep kit for Illumina and Oxford Nanopore Ligation sequencing kit and sequenced on Illumina MiSeq and Nanopore GridION, respectively. Sequencing reads were mapped to the Wuhan reference genome and compared to eleven other SARS-CoV-2 strains of Asian, European and American origins. A phylogenetic tree was constructed with the consensus genomes for local and non-African strains. Three of the Gambian strains had a European origin (UK and Spain), two strains were of Asian origin (Japan). In The Gambia, Nanopore and Illumina sequencers were successfully used to identify the sources of SARS-CoV-2 infection in COVID-19 cases.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche